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1. The equation for oscillation of a real point under the actions of a 

sinusoidal force and of a nonlinear restoring force has the form 

cl”.c 
In= + Cx = Ef (x) f .sE sin vt (1.1) 

Xere f(x) is a nonlinear or piecewise linear 

function of X, and 6 is a small parameter. 

In [ 1 1 , Equation (1.1) is solved by an 

asymptotic method, and the first approximation 

solution is found in the form 

zc= aces*, +=vt+e (1.2) 

The values of (I and 8 are determined by means of the following system 

of equations: 

where 

‘J x ?Z - 
01 (a) = s 

\ 
’ f (a cos $) sin $ cl+, 02 (a) - 8 

0” 
I 

f ( a cos $) cos Q cl+, 0= ; (1.4) 
‘i 

If f(z) is a polynomial or a piecewise linear function with a graph 

that is symmetric with respect to the origin, then o,(c) = 0. Equation 

(1.3) becomes in this case 
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The system of equations (1.5) is solved in [ 1 1 for the stationary 
synchronous operating conditions wifh constant amplitude a and with a 

frequency equal to that of the disturbing force. In this case the deriva- 

tives da/dt and de /dt are set equal to zero In this manner one can de- 

termine, by means of (1.5)) the amplitude of the stationary synchronous 
oscillations. We shall show that Equations (1.5) make it possible to 

solve the problem in the general case by finding the solutions a = a(t) 

and 8 = 8( t) . By Equations (1.5) we have 

Hence, integrating, we obtain 

4 (0 - Y) a2 - 3& \ 02 (u) da + Y(&) u sin 0 = C 
u’ 

(1.6) 

In this equation, as well as in all following ones, we select only 
one value of the indefinite integral without the arbitrary constant. 

Eliminating 8 from the first one of Equation (1.5) by means of (1.6), 

we find 

After integration of the last equation, we obtain a = a(t), and after 

that we find-by means of (1.6) the function 8 = 8(t). Equation (1.7) 
shows that in the general case the amplitude does not tend towards a con- 

stant value as t + -. 

2. Let us consider an example. Suppose that we are given a system with 

a characteristic restoring force consisting of straight line segments 

(see figure). For this system 

I 

- (c’ - c) .z’ for - zo,(-c~<so 

Ej (a) = 

i 

-- (c’ - c) 20 for 20 < z f w 

(6’ -~- c) %lJ for - W ,< Z .< -- 90 

Evaluating a2 (a) by means of the second formula of (1.4)) we divide 

the interval of integration into three parts. The limits of integration 

are chosen in each interval in accordance with the first equation (1.2). 

Making use of a known result [ 1 1 

we obtain 
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\ Wa fa) da -_ _ 2 (e’ _ c) i(,02 + $ *‘) sin-’ y + Gxo -1 f2.2) 

In particular, if x0 = 0, c’-= M, and c’+, = F,, we obtain 

f 
a2 (a) da = - 4Foa 

. 
f2.3) 

Integrating Equation (1.7) for this particular case, we obtain elliptic 
integrals in the left part. In accordance with existing solutions [ 1.2 1 , 
the resonance (o= v) in the system under consideration leads to an un- 
bounded increase of the amplitude of the oscillations. This, however. is 
always the case. Indeed, under resonance Equation (l.+i’f, in accordance 
with Expression (2.2). takes on the form 

If the condition 

(2.5) 

is satisfied, then Expression (2.4) will be positive when a + f =, and 
resonance within the system leads to an unbounded increase of the 
amplitude of oscillations. If certain inequalities, which are the reverse 
of (2.5), are satisfied, then the expression in braces of (2.4) will be 
negative when Q + f M, and the resonance in the system under considera- 
tion will not lead to an unbounded increase of the amplitude of the 
oscillations. 

The largest absolute value of the amplitude in this case is found as 
the largest absolute value of the real roots of the equation 

For a system with an initial stretching (z, = 0, c’-= 00, c’.z~ = Fo), 

Equation (2.4) can be solved in terms of elementary functions, and the 
condition of boundedness of the amplitude of oscillations under resonance 
will be 

eE<Woln (2.7) 

In this case, Equation (2.6) takes on the form 
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From this we obtain extremal values of the amplitude of oscillations 

under resonance for 

condition (2.7) 

2Cmv 

al= u-,/n-EE 

(Here C is the same as in (1.6) and (2.3); the amplitude of oscillations 

a system with initial stretching subjected to the 

2Cnzv 

ns=U’oJn+~E ’ 
C=z a +$&asinfl 

changes from al to a2 and back.) 

Making use of the second equation in (1.5)) of (2.1) and of (2.8), we 
obtain the cyclical frequency of the oscillations in this case: 

4J _=v+~~=y+c 
dt a’ 
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